Multicast (UDP)
Network/Network 2012. 4. 6. 16:24Multicast (UDP)
Related pages: Unicast (UDP / TCP) Q&AWhy multicast | Multicast on LAN | Multicast on WAN | What is multicast | Multicast Client | Multicast Server | Programming Documentation | Network Numbering Documentation |
Why multicast
Multicast is useful when you have to transmit the SAME message to more than one host.
Usually the client that send multicast does not know how many servers will really receive his packets.
When talking about client-server in network, the client sends the request, the server receives the request and might send back an answer.
Since multicast is based UDP, the transmission is by default not reliable.
The advantage of using multicast instead of broadcast is that only interested hosts will get the message, and the message should be transmitted only once for many clients (saves a lot of bandwith).
Another advantage is the possibility of sending packets larger than interface MTU
Multicast on LAN
This is topic is quite complex, but we can for simplicity devide LANs in 3 kind:
- LAN with hubs only
- LAN with switches without IGMP support
- LAN with switches with IGMP support
The first 2 types of LANs are the easiest to explain, since the behaviour for multicast is exactly the same; multicast is transmitted over all network segments.
In the third case where the LAN has IGMP aware switches, and IGMP support is enabled, multicast packets will be transmitted only on segments where hosts have requested it. Other segments will not see this kind of traffice until one of the hosts requests it.
Of course packets sent to 224.0.0.1/224.0.0.2 could be observed on all segments, since these addresses have a special meaning ( Reserved Multicast IP addresses)
Multicast on WAN
... Still Working ....
What is multicast
Multicast is a kind of UDP traffic similar to BROADCAST, but only hosts that have explicitly requested to receive this kind of traffic will get it. This means that you have to JOIN a multicast group if you want to receive traffic that belongs to that group.
IP addresses in the range 224.0.0.0 to 239.255.255.255 ( Class D addresses) belongs to multicast. No host can have this as IP address, but every machine can join a multicast address group.
Before you begin
- Multicast traffic is only UDP (not reliable)
- Multicast migth be 1 to many or 1 to none
- Not all networks are multicast enabled (Some routers do not forward Multicast)
Sample code
This is a sample multicast server without error handlingComments on code
----------- cut here ------------------This is a sample multicast client without error handling// Multicast Server // written for LINUX // Version 0.0.2 // // Change: IP_MULTICAST_LOOP : Enable / Disable loopback for outgoing messages // // Compile : gcc -o server server.c // // This code has NOT been tested // #include <stdio.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #define MAXBUFSIZE 65536 // Max UDP Packet size is 64 Kbyte int main() { int sock, status, socklen; char buffer[MAXBUFSIZE]; struct sockaddr_in saddr; struct ip_mreq imreq; // set content of struct saddr and imreq to zero memset(&saddr, 0, sizeof(struct sockaddr_in)); memset(&imreq, 0, sizeof(struct ip_mreq)); // open a UDP socket sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP); if ( sock < 0 ) perror("Error creating socket"), exit(0); saddr.sin_family = PF_INET; saddr.sin_port = htons(4096); // listen on port 4096 saddr.sin_addr.s_addr = htonl(INADDR_ANY); // bind socket to any interface status = bind(sock, (struct sockaddr *)&saddr, sizeof(struct sockaddr_in)); if ( status < 0 ) perror("Error binding socket to interface"), exit(0); imreq.imr_multiaddr.s_addr = inet_addr("226.0.0.1"); imreq.imr_interface.s_addr = INADDR_ANY; // use DEFAULT interface // JOIN multicast group on default interface status = setsockopt(sock, IPPROTO_IP, IP_ADD_MEMBERSHIP, (const void *)&imreq, sizeof(struct ip_mreq)); socklen = sizeof(struct sockaddr_in); // receive packet from socket status = recvfrom(sock, buffer, MAXBUFSIZE, 0, (struct sockaddr *)&saddr, &socklen); // shutdown socket shutdown(sock, 2); // close socket close(sock); return 0; }----------- cut here ------------------
----------- cut here ------------------// Multicast Client // written for LINUX // Version 0.0.2 // // Change: IP_MULTICAST_LOOP : Enable / Disable loopback for outgoing messages // // Compile : gcc -o client client.c // // This code has NOT been tested // #include <stdio.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #define MAXBUFSIZE 65536 // Max UDP Packet size is 64 Kbyte int main() { int sock, status, socklen; char buffer[MAXBUFSIZE]; struct sockaddr_in saddr; struct in_addr iaddr; unsigned char ttl = 3; unsigned char one = 1; // set content of struct saddr and imreq to zero memset(&saddr, 0, sizeof(struct sockaddr_in)); memset(&iaddr, 0, sizeof(struct in_addr)); // open a UDP socket sock = socket(PF_INET, SOCK_DGRAM, 0); if ( sock < 0 ) perror("Error creating socket"), exit(0); saddr.sin_family = PF_INET; saddr.sin_port = htons(0); // Use the first free port saddr.sin_addr.s_addr = htonl(INADDR_ANY); // bind socket to any interface status = bind(sock, (struct sockaddr *)&saddr, sizeof(struct sockaddr_in)); if ( status < 0 ) perror("Error binding socket to interface"), exit(0); iaddr.s_addr = INADDR_ANY; // use DEFAULT interface // Set the outgoing interface to DEFAULT setsockopt(sock, IPPROTO_IP, IP_MULTICAST_IF, &iaddr, sizeof(struct in_addr)); // Set multicast packet TTL to 3; default TTL is 1 setsockopt(sock, IPPROTO_IP, IP_MULTICAST_TTL, &ttl, sizeof(unsigned char)); // send multicast traffic to myself too status = setsockopt(sock, IPPROTO_IP, IP_MULTICAST_LOOP, &one, sizeof(unsigned char)); // set destination multicast address saddr.sin_family = PF_INET; saddr.sin_addr.s_addr = inet_addr("226.0.0.1"); saddr.sin_port = htons(4096); // put some data in buffer strcpy(buffer, "Hello world\n"); socklen = sizeof(struct sockaddr_in); // receive packet from socket status = sendto(sock, buffer, strlen(buffer), 0, (struct sockaddr *)&saddr, socklen); // shutdown socket shutdown(sock, 2); // close socket close(sock); return 0; }----------- cut here ------------------
Be careful because ...
Possible differences might be noted between different flavour of Unix.
In some implementation you might need to call setsockopt before calling bind.
Note that we do not BIND the server to a specific interface, but we JOIN the multicast group ( IP_MULTICAST_JOIN ) on a specific interface
The same appens on the client side, we do not BIND to an interface but we set the transmitting interface with IP_MULTICAST_IF.
IP Classes
Class Name | Address Bits | From ... To | Pourpose |
---|---|---|---|
Class A | 0 | 0.0.0.0 - 127.255.255.255 | Public IP address |
Class B | 10 | 128.0.0.0 - 191.255.255.255 | Public IP address |
Class C | 110 | 192.0.0.0 - 223.255.255.255 | Public IP address |
Class D | 1110 | 224.0.0.0 - 239.255.255.255 | Multicast IP Addresses |
Class E | 11110 | 240.0.0.0 - 255.255.255.255 | Reserved |
Programming Documentation
If you are interested in getting more details about socket programming have a look at- W. R. Stevens "UNIX Network Programming (Volume I)"
Network Numbering Documentation
For more details about IP address space usage see IANAReserved Multicast IP addresses
IANA assigned Numbers
last modification 13 December 2003
- 출처 : http://tack.ch/multicast/
'Network > Network' 카테고리의 다른 글
TCP - 신뢰적인 전송 5 : TCP는 실제 Sequence number와 Ack number field에 무엇을 채우는가? (0) | 2014.02.19 |
---|---|
HTTP 상태 코드 (0) | 2013.10.16 |
FIN_WAIT (0) | 2012.03.22 |
inet_addr, inet_ntoa (0) | 2012.02.22 |
Multicast (2) IGMP (0) | 2012.01.15 |